200km Decoy-state quantum key distribution with photon polarization
نویسندگان
چکیده
We demonstrate the decoy-state quantum key distribution over 200 km with photon polarization through optical fiber, by using superconducting single photon detector with a repetition rate of 320 Mega Hz and a dark count rate of lower than 1 Hz. Since we have used the polarization coding, the synchronization pulses can be run in a low frequency. The final key rate is 14.1 Hz. The experiment lasts for 3089 seconds with 43555 total final bits. © 2009 Optical Society of America OCIS codes: (270.0270) Quantum optics; (060.0060) Fiber optics and optical communications; (060.5565) Quantum communications. References and links 1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conferenceon Computers, Systems and Signal Processing, (Bangalore, India, 1984), pp. 175–179. 2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography”, Rev. Mod. Phys. 74, 145 (2002). 3. M. Dusek, N. Lütkenhaus, and M. Hendrych, in Progress in Optics VVVX, edited by E. Wolf (Elsevier, 2006). 4. X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states”, Phys. Rep. 448, 1 (2007) 5. H. Inamori, N. Lütkenhaus, D. Mayers, “Unconditional security of practical quantum key distribution”, Eur. Phy. J. D 41, 599 (2007), which appeared in the arXiv as quant-ph/0107017. 6. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices”, Quantum Inf. Comput. 4, 325 (2004). 7. V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing”, Phys. Rev. Lett. 100, 200501 (2008) and also in 3rd Workshop on Theory of Quantum Computation, Communication, and Cryptography (TQC 2008), JAN 30-FEB 01, 2008 Univ. Tokyo, Tokyo, Japan. 8. Raymond Y.Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution”, New J. Phys. 11, 045024 (2009). 9. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states”, Phys. Rev. A 51, 1863 (1995); H. P. Yuen, “Quantum amplifiers, quantum duplicators and quantum cryptography”, Quantum Semiclass. Opt. 8, 939 (1996). 10. G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders, “Limitations on Practical Quantum Cryptography”, Phys. Rev. Lett. 85, 1330 (2000); N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution”, Phys. Rev. A 61, 052304 (2000); N. Lütkenhaus and M. Jahma, “Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack”, New J. Phys. 4, 44 (2002). 11. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication”, Phys. Rev. Lett. 91, 057901 (2003). 12. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography”, Phys. Rev. Lett. 94, 230503 (2005); X.-B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light”, Phys. Rev. A 72, 012322 (2005). 13. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution”, Phys. Rev. Lett. 94, 230504 (2005); X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution”, Phys. Rev. A 72, 012326 (2005). 14. J.W. Harrington J.M Ettinger, R.J. Hughes, J.E. Nordholt, “Enhancing practical security of quantum key distribution with a few decoy states”, quant-ph/0503002. 15. X.-B. Wang, “Decoy-state quantum key distribution with large random errors of light intensity”, Phys. Rev. A 75, 052301 (2007) 16. X.-B. Wang, C.-Z. Peng and J.-W. Pan, “Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source”, Appl. Phys. Lett. 90, 031110 (2007) 17. X.-B. Wang, C.-Z. Peng, J. Zhang, L. Yang and J.-W. Pan, “General theory of decoy-state quantum cryptography with source errors”, Phys. Rev. A 77, 042311 (2008); X.-B. Wang, L. Yang, C.-Z. Peng and J.-W. Pan, “Decoystate quantum key distribution with both source errors and statistical fluctuations”, New. J. Phys. 11, 075006 (2009). 18. Y. Zhao, B. Qi, and H.-K. Lo, “Quantum key distribution with an unknown and untrusted source”, Phys. Rev. A 77, 052327 (2008). 19. W. Mauerer and C. Silberhorn, “Quantum key distribution with passive decoy state selection”, Phys. Rev. A 75, 050305(R) (2007); Y. Adachi, T. Yamamoto, M. Koashi, and N. Imoto, “Simple and Efficient Quantum Key Distribution with Parametric Down-Conversion”, Phys. Rev.Lett. 99, 180503 (2008). 20. T. Hirikiri and T. Kobayashi, “Decoy state quantum key distribution with a photon number resolved heralded single photon source”, Phys. Rev. A 73, 032331 (2006); Q. Wang, X.-B. Wang, G.-C. Guo, “Practical decoy-state method in quantum key distribution with a heralded single-photon source”, Phys. Rev. A 75, 012312 (2007). 21. M. Hayashi, “General theory for decoy-state quantum key distribution with an arbitrary number of intensities”, New J. Phys. 9, 284 (2007). 22. R. Ursin et al., “Entanglement-based quantum communication over 144 km”, Nat. Phys. 3, 481 (2007). 23. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations”, Phys. Rev. Lett. 92, 057901 (2004); C. Branciard, N. Gisin, B. Kraus, and V. Scarani, “Security of two quantum cryptography protocols using the same four qubit states”, Phys. Rev. A 72, 032301 (2005). 24. M. Koashi, “Unconditional Security of Coherent-State Quantum Key Distribution with a Strong Phase-Reference Pulse”, Phys. Rev. Lett. 93, 120501(2004); K. Tamaki, N. Lükenhaus, M. Loashi, J. Batuwantudawe, “Unconditional security of the Bennett 1992 quantum key-distribution scheme with strong reference pulse”, quant-ph/0607082. 25. D. Rosenberg et al., “Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber”, Phys. Rev. Lett. 98, 010503 (2007). 26. C.-Z. Peng et al., “Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding”, Phys. Rev. Lett. 98, 010505 (2007). 27. T. Schmitt-Manderbach et al., “Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km”, Phys. Rev. Lett. 98, 010504 (2007). 28. Z.-L. Yuan, A. W. Sharpe, and A. J. Shields, “Unconditionally secure one-way quantum key distribution using decoy pulses”, Appl. Phys. Lett. 90, 011118 (2007); A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate”, Opt. Exp. 16, 18790 (2008). 29. A. Tanaka et al., “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization”, Opt. Exp. 16, 11354 (2008). 30. D. Rosenberg et al., Quantum Electronics and Laser Science Conference (QELS) Baltimore, Maryland May 6, 2007. 31. D. Rosenberg et al., “Practical long-distance quantum key distribution system using decoy levels”, New J. Phys. 11, 045009 (2009). 32. D. Stucki et al., “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres”, New J. Phys. 11, 075003 (2009). 33. H. Takesue et al., “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors”, Nat. Photonics 1, 343-348 (2007). 34. T.-Y. Chen et al., “Field test of a practical secure communication network with decoy-state quantum cryptography”, Opt. Exp. 17, 6450 (2009). 35. J. Chen et al., “Stable quantum key distribution with active polarization control based on time-division multiplexing”, New J. Phys. 11, 065004 (2009). 36. Q. Wang et al., “Experimental Decoy-State Quantum Key Distribution with a Sub-Poissionian Heralded SinglePhoton Source”, Phys. Rev. Lett. 100, 090501 (2008). 37. Z. Q. Yin et al., “Experimental Decoy State Quantum Key Distribution Over 120 km Fibre”, Chin. Phys. Lett. 25, 3547 (2008). 38. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental Quantum Key Distribution with Decoy States”, Phys. Rev. Lett. 96, 070502 (2006); Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, in Proceedings of IEEE International Symposium on Information Theory, Seattle, 2006, pp. 2094–2098 (IEEE, New York). 39. G. Wu, J. Chen, Y. Li, L.-L. Xu, and H.-P. Zeng, “Preventing eavesdropping with bright reference pulses for a practical quantum key distribution”, Phys. Rev. A 74, 062323(2006).
منابع مشابه
Security of quantum key distribution using weak coherent states with nonrandom phases
We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol in the case where the key information is encoded in the relative phase of a coherent-state reference pulse and a weak coherent-state signal pulse, as in some practical implementations of the protocol. In contrast to previous work, our proof applies even if the eavesdropper knows the phase of the reference pul...
متن کاملDetector decoy quantum key distribution
Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is specially suited for t...
متن کاملPractical decoy state method in quantum key distribution with heralded single photon source
Qin Wang, Xiang-Bin Wang, and Guang-Can Guo Key Laboratory of Quantum Information, Department of Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China and Department of Physics, Tsinghua University, Beijing 100084, China Abstract We propose a practical decoy state method with heralded single photon source for quantum key distribution (QKD). In the prot...
متن کاملPhoton-number-solving Decoy State Quantum Key Distribution
Yong-gang Tan and Qing-yu Cai1∗ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan ,430071, China and Graduation University of the Chinese Academy of Sciences, Beijing 10081, China Abstract Practical photon sources are weak coherent sources so that multiphoton pulses are inevitable. In o...
متن کاملQuantum key distribution with passive decoy state selection
We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfection...
متن کامل